If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-0.9x^2+17x+25=0
a = -0.9; b = 17; c = +25;
Δ = b2-4ac
Δ = 172-4·(-0.9)·25
Δ = 379
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(17)-\sqrt{379}}{2*-0.9}=\frac{-17-\sqrt{379}}{-1.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(17)+\sqrt{379}}{2*-0.9}=\frac{-17+\sqrt{379}}{-1.8} $
| 3r+7r=-10 | | 3r-7r=-10 | | (8•k)•4= | | 1/2=x-23/x+5 | | 18-2/3y=-4 | | -2/3y=-4 | | 0.99+10=0.89d | | 0.9x^2+17x+25=0 | | 9-2/3y=-4 | | -0.9x^2-17x-25=0 | | 15+0.50p=25+0.25 | | 2(3x–1)=9(x–2)–7 | | 2-7y-15=0 | | F(r)=1.75r+5 | | $15+$0.50p=$25+$0.25p | | 24=-4K-8k | | b^2+10b-14=-11 | | 1/3m+1=7 | | 3(7x-12)=-14 | | -1-7y-15=0 | | 5-7y-15=0 | | 21=7-5x | | 4-7y-15=0 | | 1-7y-15=0 | | 2-3x=6+2 | | m²-2m+5=0 | | 1(-4+6x)=1x+2(x+9) | | V^2+10v-14=-11 | | Mx(13/16)=39 | | -6=8w-5 | | -3/5=4/5w-1/2 | | (3x-4)/8=(x+2)/3 |